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1    Overview 

This project focused on designing fast algorithms for basic combinatorial optimization problems, 
including maximum flow, matching, multicommodity flow, and generalized flow. Many important 
applications are naturally stated as variants of these problems, and hence improved algorithms for 
these problems immediately lead to improved algorithms for a wide variety of applications. 

Our goal was to improve both sequential and parallel complexity. In many applications, solving 
a multicommodity or a generalized flow problem is only a first step in approximately solving an 
NP-complete problem; in the majority of such cases there is no need to have an exact solution of the 
problem. One of the focuses of the project was design of efficient approximation algorithms. 

Substantial progress was made on designing new exact and approximation algorithms for the 
above mentioned problems. In particular, a new general approach was developed for solving a 
class of "packing" and "covering" problems. These problems can be viewed as generalizations of 
multicommodity flow, and include many diverse applications ranging from machine scheduling to 
VLSI wire routing. 

Additional results include strongly polynomial algorithms {i.e. algorithms which running time 
does not depend on the precision of the input data) for several optimization problems, and a new 
parallel deterministic algorithms for bipartite matching. We have also developed new primitives that 
can be efficiently implemented and that lead to improved solutions for several basic coordination 
problems that one encounters when designing algorithms for shared memory multiprocessors. 

2    Summary of Research Findings 

2.1    Multicommodity Flow 

The multicommodity flow problem is a natural generalization of the maximum-flow problem where, 
instead of a single commodity, we have several commodities, defined by demand/supply vectors, 
that have to be shipped through the network such that the total amount of flow through each 
edge is below its capacity. Instead of trying to satisfy all the demands, one can try to satisfy the 
maximum percentage of each demand. This modification is called the concurrent flow problem. Many 
optimization problems can be stated as special cases of multicommodity flow or concurrent flow. 
Applications include VLSI layout, network routing, and efficient simulations of one interconnection 
network by another. 

In many cases multicommodity flow algorithm is used as a subroutine to find approximate 
solutions to NP-complete integer problems, and one does not need to obtain an exact solution. 
Until now it was believed that multicommodity flow, even with a small number of commodities, is 
much more complicated compared to the single commodity flow. In [18] we have considered the 
special case when all the edges have the same capacity, and developed an algorithm for approximating 
concurrent flow problem for this type of networks. In [21] we have have considered the general case 
of unrestricted capacities and have shown that it is possible to approximately compute a fc-commodity 



flow in time that is close to the time it takes to approximately compute k single-commodity flows. 
Our algorithm is simple to implement and it is much faster than the previously known algorithms. 
In addition, the fact that it consists of repetitive computations of minimum-cost flow, means that it 
might be more suitable for implementation in practice. (Minimum-cost flow problems are efficiently 
handled by the network simplex algorithm in practice.) The full version of [21 ] was invited to Journal 
of Computer and System Sciences (JCSS). 

2.2 Packing and Covering problems 

In [20] we have generalized results on the multicommodity flow to apply to a large class of linear 
programs, the so called "packing" and "covering" programs. For example, one can view job scheduling 
as packing jobs into machines, where the "size" of each job is its execution time, and the "capacity" is 
the maximum amount of execution time we allow to be assigned to a machine. The only previously 
known algorithms for solving these problems are based on general linear programming techniques. 
Our techniques greatly outperform the general methods in many applications. Our algorithm can be 
viewed as a Lagrangean relaxation; an important aspect of our results is that we obtain a theoretical 
analysis of the running time of a Lagrangean relaxation-based algorithm. The new approach yields 
several orders of magnitude of improvement over the best previously known running times for the 
scheduling of unrelated parallel machines in both the preemptive and the non-preemptive models, 
for the job shop problem, for the cutting-stock problem, and for the minimum-cost multicommodity 
flow problem. The full version of [20] was invited to Journal of Computer and System Sciences 
(JCSS). 

2.3 Min-Cut / Max-Flow Relationships for Multicommodity Flow 

In order to prove that a given multicommodity flow problem is infeasible, it is sufficient to exhibit 
a cut whose capacity is below the sum of the demands that are separated by the cut. The min-cut 
max-flow theorem for the single-commodity flow problem states that the non-existence of such a 
"bad" cut proves that a feasible flow does exist. This theorem, discovered in the fifties, is the basis of 
currently fastest single-commodity flow algorithms. 

For multicommodity flow the situation is more complicated. A multicommodity flow problem 
can be infeasible even if the "cut condition" is satisfied. A natural question to ask is how large a 
"safety margin" do we need, i.e. how large should be the minimum ratio (over all cuts) of the capacity 
of the cut to the sum of the demands that are separated by this cut, in order to ensure existence of a 
feasible flow. A related problem is to consider a multicommodity flow problem, and to search either 
for a feasible flow, or for a cut whose ratio is below the above mentioned safety margin. This leads to 
an algorithm that finds an approximately minimum-cut. Approximately minimum-cut computation 
is a basic step for construction of approximation algorithms for a variety of NP-complete problems. 

The best bound on the minimum-cut maximum-flow ratio for general multicommodity flow 
problems was 0(log n log D), where D is the sum of all the demands and n is the number of nodes 
in the graph. Note that logD can be as large as n, making this bound useless. In [11] we have 
improved this bound to 0(log2 k), where k is the number of commodities, proving for the first time 



that the bound does not depend on the precision of the input data. In [12] we proved that if the 
network is sufficiently sparse, then the bound changes to 0(logA;). Moreover, for planar graphs 
when the demands are uniform (unit demand between each pair of nodes) we have improved the 
bound to 0(1). 

2.4    Strongly Polynomial Algorithms 

An important open problem is whether or not there exists a strongly polynomial algorithm for 
linear programming, i.e. an algorithm with running time that depends only on the number of 
inequalities and variables, and not on the size of the numbers involved. In recent years there has 
been substantial progress in this direction, and currently there are several special cases of linear 
programs for which strongly polynomial algorithms are known. In a joint work with Norton and 
Tardos [22], we have developed a technique that extends the class of linear programs solvable in 
strongly-polynomial algorithms. Informally, we prove that if we have a linear problem that is solvable 
in strongly-polynomial time, than any problem that is obtained from it by adding a constant number 
of additional variables or rows, is solvable in strongly-polynomial time as well. In particular, our 
technique leads to the first strongly-polynomial algorithm for the concurrent multicommodity flow. 
(Concurrent multicommodity flow is similar to multicommodity flow, but instead of having to 
satisfy all the demands, we are required to satisfy a percentage of each demand). This paper was 
invited to Journal of Algorithms. 

2.5 Large scale optimization 

Kamath has been working on design and implementation of algorithms to compute bounds on 
solutions to NP-hard problems. A new technique to design such algorithms (based on the interior- 
point method for linear programming) is presented in [8]. This technique has been applied towards 
computing bounds and approximate solutions for graph partitioning, coloring, independent set, and 
maximum satisfiability. 

Minimum-cost assignment in bipartite graphs is a basic problem that is encountered in appli- 
cations ranging from scheduling to vision. Kamath has been working on implementing a variant 
of dual-projective interior-point linear programming method especially geared towards solving very 
large assignment problems. The algorithm and implementation results are presented in [7]. Object- 
oriented implementation of an interior-point algorithm to solve large multicommodity flow problems 
is presented in [10]. These problems, which arise in a wide range of applications (including network 
design, crew scheduling, bandwidth allocation, etc.) have a special structure that can be effectively 
exploited in an object-oriented setup. The resulting implementation not only reduced the space 
requirement (often a problem with interior-point implementations) but also improved the speed. 

2.6 Graph separators 

A node separator of a graph is a set of nodes whose removal separates the graph into two roughly 
equal components. Finding small separators has numerous applications including VLSI layout and 



simulation of one interconnection network by another. In general, the fact that a certain family of 
graphs has small separators can be used to construct a variety of divide and conquer algorithms for 
these graphs. 

One natural way of defining graph families is based on the notion of a. graph minor. We say that 
graph if is a minor of G if H can be obtained from G by contracting some of G s edges and deleting 
some other edges and nodes. For example, Kuratowski theorem states that a graph is planar if and 
only if it does not include a clique of 5 nodes (K5) or a complete bipartite graph on 6 nodes {K3t3) 
as minors. 

In [4] we prove that the fact that a graph does not have Kh as a minor implies that it has an 
0(hy/n\ogn)-size separator. This is an improvement of previously best known bound for the case 
when h = w(logn). We also show how to apply these techniques to simulate a large class of graphs 
on a hypercube and to design of efficient out-of-core relaxation schemes. 

2.7 Algorithms for Asynchronous Shared-Memory Multiprocessor 

A snapshot scan algorithm takes an "instantaneous" picture of a region of shared memory that may 
be updated by concurrent processes. Many complex and difficult shared memory algorithms can 
be greatly simplified by structuring them around the snapshot scan abstraction. Unfortunately, 
the substantial decrease in conceptual complexity is quite often counterbalanced by an increase in 
computational complexity. In [24] we introduce the notion of a weak snapshot scan, a slightly 
weaker primitive that has a more efficient implementation. We propose the following methodology 
for using this abstraction: First, design and verify an algorithm using the more powerful snapshot 
scan, and second, replace the more powerful but less efficient snapshot with the weaker but more 
efficient snapshot, and show that the weaker abstraction nevertheless suffices to ensure the correctness 
of the enclosing algorithm. 

We give two examples of algorithms whose performance can be enhanced while retaining a simple 
modular structure: randomized consensus and bounded concurrent timestamping. The resulting 
randomized consensus protocol is the fastest known protocol that uses only bounded values. Our 
technique also allow us to simplify and improve the complexity of the timestamping protocol. 

2.8 Contention in Shared-Memory Multiprocessor 

Inability of standard models of shared memory multiprocessors to take memory contention into 
account is one of their main shortcomings. Two algorithms might be indistinguishable in these 
models even if one causes many concurrent accesses to the same memory cell, while the other makes 
sure such accesses never happen. In many of the current multiprocessor architectures concurrent 
access causes significant degradation in performance, and should be avoided as much as possible. 

Together with collaborators, Waarts has proposed a new model that facilitates comparison of 
algorithms with respect to contention. Using this model, she has provided the first formal expla- 
nation of the experimental results indicating superiority of "counting networks" over conventional 
approaches for implementation of shared counters. 



2.9    On-line Optimization 

Support for virtual circuits is one of the basic services provided by both existing and future high-speed 
communication networks. In order to use the network (say, transmit video signal from one point to 
another) the user requests a (virtual) circuit to be established between these points. The network has 
to choose a path between the endpoints of the circuit and allocate sufficient bandwidth along this 
path. Because of hardware limitations, rerouting of circuits, i.e. moving a circuit from one path to 
another, is either forbidden or heavily discouraged. 

It is easy to see that bad routing decisions may lead to very poor utilization of the total available 
bandwidth. One of the main thrusts of this research project was development of novel online 
strategies for virtual circuit routing that lead toprovably efficient bandwidth utilization. The strategies 
are based on the recent combinatorial approximation algorithms for multicommodity flow [18, 20]. 

In [6] we consider online routing of permanent virtual circuits (PVCs) and describe an algorithm 
that achieves an O(logn) competitive factor with respect to congestion, where n is the number of 
nodes in the network. Roughly speaking, this means that the congestion on the maximum congested 
link achieved by this algorithm will never exceed 0(log n) times the maximum congestion achieved 
by the best possible omniscient algorithm that knows all of the future requests. In [6] we extended 
these results to the switched virtual circuit routing case (SVC), i.e. the case where each circuit 
has an associated duration. The competitive ratio of the resulting routing strategy is bounded by 
O (log nT), where T is the maximum duration of a circuit. 

Instead of minimizing congestion, sometimes it is more appropriate to maximize the throughput, 
i.e. the average number of transmitted bits per unit of time. In [5], we present an O(lognT)- 
competitive algorithm with respect to throughput. We also show that the performance achieved 
by this algorithm is asymptotically optimal. A variant of this algorithm (as applied to permanent 
virtual circuit routing) was implemented in Bell Laboratories and will be used in the ATM switches 
currently manufactured by AT&T. Together with Kamath, we have implemented a switched virtual 
circuit variant and are currently testing it on data supplied by AT&T. 
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